

Hydrogen and Fuel Cell Development in Japan

February 25, 2020 Daishu HARA

New Energy and Industrial Technology Development Organization (NEDO)

Agenda

1. NEDO's role in Japan

- 2. Hydrogen Strategy
- 3. Current Status of Fuel Cell Application
- 4. NEDO's programs

New Energy and Industrial Technology Development Organization (NEDO)

- Foundation Originally established on October 1, 1980; reorganized as an incorporated administrative agency on October1, 2003
- Minister in Minister of Economy, Trade and Industry Charge
- Personnel About 1,000
- Chairman Mr. Hiroaki ISHIZUKA

Budget:160 billion JPY in FY2019

Who we are…

Agenda

- 1. NEDO's role in Japan
- 2. Hydrogen Strategy
- 3. Current Status of Fuel Cell Application
- 4. NEDO's programs

Why Hydrogen/ Background

1st Ministerial Council on Renewable Energy, Hydrogen and Related Issues (11th April 2017)

Prime Minister Shinzo Abe stated "Japan will be the first in the world to realize a hydrogen-based society. I request relevant ministers to formulate the basic strategy within this year."

In particular, he requested relevant ministers to

- > accelerate the establishment of hydrogen refuelling stations & streamline regulations
- formulate a common scenario toward the building of supply chains and the full-scale introduction of hydrogen power generation

World's first national strategy

- ✓ 2050 Vision: position H₂ as a new energy option (following Renewables)
- ✓ Target: make H₂ affordable (\$3/kg by 2030 \Rightarrow \$2/kg)

Scenario

			Current	2020	2025	2030	2050
Supply			Domestic H ₂ -	(RD&D) -	Inte − → H ₂ S Domesti	emational Supply Chains ic Power-to-ga	\rightarrow CO ₂ -free H ₂ s
Vo	lume	(t/y)	0.02	0.4		300k	5~10m
Со	st (\$/	kg)	~10			3	2
Demand	ະ ໑	Large	Power Plant	(RD&D) ··		>1GW—	→ 15~30GW
	iene- ation	FC CH *Prima	IP* 230k — ary energy: natural gas.	—— 1.4m —		—_ <mark>5.3</mark> m—	→ Replace Old Systems
	-	HRS	100 —	<u> </u>	<u> </u>	— (900) —	→ Replace Filling Stations
	4 0 b	FCV	2.5k —	40k	— 200k	800k	Replace
	ility	FC Bu	s 5—	100		— 1.2 k —	\rightarrow Conventional
		FC FL	50 —	<u> </u>		10 k	Mobility
		Indus	try Use		(RD&D) · -	> E	xpand H ₂ Use

Hydrogen Energy Ministerial Meeting

- October 23rd, 2018 / Tokyo
- Representatives from 21 countries, regions, international organizations

*Japan, Australia, Austria, Brunei, Canada, China, France, Germany, Italy, the Netherlands, New Zealand, Norway, Poland, Qatar, South Africa, Korea, United Arab Emirates, United Kingdom, United States, European Commission, IEA

Point of Tokyo Statement (Chair's Summary)

- 1. Collaboration on Technologies and Coordination on Harmonization of Regulation, Codes and Standards
- 2. Promotion of Information Sharing, International Joint Research and Development Emphasizing Hydrogen Safety and Infrastructure Supply Chain
- 3. Study and Evaluation of Hydrogen's Potential across Sectors Including Its Potential for Reducing Both CO₂ Emissions and Other Pollutants
- 4. Communication, Education and Outreach

Strategic Roadmap for Hydrogen and Fuel Cells

Approach to achieving target for PEFC

- Sharing technical information and problems in a cooperation area among stakeholders
- Developing technology for reducing the amount of platinum used
- Developing technology for reducing of amount of carbon fiber in hydrogen storage system

Acti	on Plan (key point) ① <hydrogen (мо<="" th="" use=""><th>bility) > Red : New target</th><th></th></hydrogen>	bility) > Red : New target							
In orde	er to reduce cost for full-scale implementation period, thorough estable nentation of regulatory reform	ishment of mass production technology and							
	Target to achieve	Approach to achieving target							
الا FCV	 200k by FY2025, 800k by FY2030 Achieving a cost reduction of FCV to the level of HV around 2025 (Price difference ¥3m → ¥0.7m) Reducing cost of main elemental technologies around 2025 (Fuel cell system around ¥20/k/W→¥5k/kW Hydrogen storage system around ¥0.7m → ¥0.3m Expansion of vehicle types for volume zones in FY2025 	 Sharing technical information and problems in a cooperation area among stakeholders Developing technology for <u>reducing the</u> <u>amount of platinum used</u>. Developing technology for <u>reducing of</u> <u>amount of carbon fiber in hydrogen</u> <u>storage systems</u> 	of the Action plan ③ <other "hydrogen="" a="" applications="" for="" global="" society"=""> Red: New Ta ing and deepening the market to expand the application of hydrogen ional cooperation led by Japan for realizing a Global "Hydrogen Society" Red: New Ta Targets Action to achieving the targets • Establishment of the technology for commercialization of hydrogen power generation in about 2030 Action to achieving the targets • Carlfy conditions for hydrogen co-firing at existing power plants • Development of highly efficient combustor</other>						
Jse (Mobilit IRS	320 by FY2025, some 900 by FY2030 Making HRS independent by the second half of the 2020s Reduction of cost for construction and operation by FY2025 (corstudin cds Y30m + 4200m, qradian cds Y40m, year + ¥15m, year) Setting of cost target for each component	Thoroughly integrate promotion of regulatory reform and technological development. (Realization of self- service)-RS, use of inexpensive steel material etc.) Consideration for nation wide networking of HRS Extrempting on pening hours.	(2696→2796) ※1MW class gas turbine Utilizing CO2-free hydrogen in the future Investigation on utilization and supply potential of CO2-free hydrogen in each industrial process Considering the introduction of the various processes for using CO2-free hydrogen in each industrial process CO2-free hydrogen in each industrial process Study for practical application of carbon recycling technology Study for practical application of carbon recycling technology						
ogen (Compressor ¥90m→¥50m High pressure vessels ¥50m→¥10m	 Increasing of the number of HRS with gasoline station/convenience store 	 ine-farm inconomic independence in about 2020, 5.3 million cumulative sales by 2030 ind condominium. Cost reduction to ¥800 thousand (PEFC) ¥1 million (SOFC) by 2020 Review of regulations for simplification of electrical 						
Hydi Bus	 1,200 FC buses by 2030 Expansion of regions where FC buses run Reducing FCbus's price by half (¥105m-¥52.5m) Independent FC bus by FY2030 	Developing technology for enhancing the fuel efficiency and durability of such vehicles <u>Expansion of types other than city buses</u> Promotion of deployment of HRS for FC buses	Achieve 5 years as a period to recover investment by about 2030 Ommercial and industrial use Realize grid-parity combining the utilization of exhaust heat in about 2025 Low voltage : CAPEX ¥500,000/kW, power generation cost ¥25/kWh bich voltage : CAPEX ¥300,000/kW, power generation cost ¥25/kWh						
Forklift	 10k FC forklifts by 2030 Expansion to an overseas markets 	<u>Versatile deployment</u> of fuel cell units <u>Promotion of maintenance of simple and easy to operate filling equipment</u>	Realize higher efficiency and durability efficiency : over 55% in about 2025 \rightarrow over 65% in the future durability : 90,000 hours \rightarrow 130,000 hours in about 2025						
NED	In addition, promote development of guidelines and technology development for expansion of hydroge	en use in the field of FC trucks, ships and train. In the field of FC trucks, ships and train. In the field of FC trucks, ships and train. In the field of FC trucks, ships and train.	 Realize "Tokyo Statement" announced in Hydrogen Energy Ministerial Meeting Coordination on harmonization of regulation, codes and standards Promotion of information sharing, international joint research Study and evaluation of hydrogen's potential Communication, education and outreach Communication, education and outreach Comparison of regulations with U.S., Europe, etc., sharing information on accidents Involvement of resource-rich countries by sharing the outcome of Japan's supply chain demonstration Take advantage of all opportunities such as Olympic and Paralympic in 2020, Osaka World Expo in 2025, and publicize the cutting-edge hydrogen technology Implement innovative technology development 						

Agenda

- 1. NEDO's role in Japan
- 2. Hydrogen Strategy
- 3. Current Status of Fuel Cell Application
- 4. NEDO's programs

Current status of residential fuel cell "Ene-Farm"

Selling Price of Ene-Farm is getting lower with increasing the number of installed unit. 300,000 unit = 210MW 350 Installed Units(PEFC) 303 Installed Units(SOFC) 250,370 300 Number of Installed Units (Total) 250,000 Selling Price (PEFC) Selling Price (10,000 JPY) ——Selling Price (SOFC) 250 200,000 244 200 150,000 150 119 100,000 100 94 50,000 50 2.550 0 0 2009fy 2013fy 2015fy 2016fy 2017fy 2018fy 2010fy 2011fy 2012fy 2014fy

SOFC unit for commercial / industrial use

Small / Medium size Fuel Cell: 30 units (for commercial, industry uses: as of March, 2019)

(3kW: Kyocera) Total efficiency: > 80% (4.2kW: Miura) Total efficiency: 90% (250kW: MHPS) Total efficiency: > 73% (hot water) 65% (Steam)

Current status of FCV and HRS

K	IRAL. #Frab-L	4 4 4 4 7 -> 2 4 7	לעניאי איז איז איז איז איז איז איז איז איז	(28/9) .								2		1					
S	3		69-	!	Kin	ki Area	aimage.com om lilustima timage.com om illustima	ge.com Illu Illustimage.c ge.com Illu	com litust istimage.co com lilust istimage.co	image.com m Illustinag image.com I m Illustimag		Ĩ		lokkaic Total	lo / Toho Sub	ku Area In Op	eration	Mahila	Planned
FCV: 3.	500) or	n ro	bad	То	tal Sub	In Op On Site	oeration Off Site	Mobile	Planned			A	6	Total 4	I I	0 Off Site	3	2
	Chugo Total	oku / Sh Sub	ikoku A In On Si	area Opera te Ot	tion ff Site	4 12 Mobile	7 Planned	3	2	2		5	Greater Total	Tokyo Sub Total	Area In C On Site	Operation Off S	n ite Mobi	Plan	ned
	8	8	2		0	6	0				L		43	40	24	1	15	3	
						ige.c	199			Chukyo	Area	In Op	eration	nage.com illusti	m Illu magud				
		Kyushu Area							Total	Sub Total	On Site	Off Site	Mol	bile	lanned				
			Total	Sub Total	On Site	Off Sit	e Mobile	Planned		29	25	8	6	1	1	4			
		Ľ	11	11	5	4	2	0	HI	RS: 1	00	in o	per	ati	on	+ 1:	1 pla	ann	ed

New Fuel Cell Application in 2019

JHyM(established on Feb. 2018) aims to develop a hydrogen station network for FCVs (Fuel Cell Vehicles) in Japan.

Agenda

- 1. NEDO's role in Japan
- 2. Basic Hydrogen Strategy
- 3. Current Status of Fuel Cell Application
- 4. NEDO's programs

Total Budget : JPY 29.2 billion / USD 275 million

First Step: Promoting fuel Cell Application

Fuel Cells:

(1) PEFC: for mobility

- Target: 0.03-0.1 g-PGM/kW (depend on durability), 50,000 hrs. life time (commercial vehicle), Power Density:> 4kW/L (in 2030)
- Focusing on basic research to accelerate material / MEA development
- Improving productivity

(2) SOFC: for stationary use

- Complete co-generation model (> 50%) by 2017
- New target: >60% efficiency (mono-generation)

Hydrogen Refueling Station:

Reducing CAPEX / OPEX

- To address regulatory reform on FCV/HRS in Japan ex. Unmanned operation with remote monitoring, Risk assessment on HRS, etc.
- Developing low cost equipment incl. Electro-chemical compressor, polymers, etc.)

Highlight of NEDO's Program (PEFC)

NEDO focused on basic research.

NEDO's Program on PEFC

Shinshu University: Ru@Pt Core-shell nano-sheet catalyst

Yamanashi University: Carbon support structure to prevent aggregation of platinum

NEDO's Program on PEFC

Roll to Roll Coater/Dryer

SCREEN Finetech Solutions

Highlight of NEDO's Program (SOFC)

Success model of R&D cycle had been established for 1)valuation/analysis and 2) endurance by public entities, 3) feedback to private sector.

Second Step: Develp H2 demand & Integrate w/ energy system

Hydrogen Supply Chain / Gas Turbine:

- Developing combustor for Hydrogen Gas Turbine Control of combustion for low NOx, back fire, etc.
- Realizing large scale hydrogen supply chain Hydrogen carriers for long distance transportation

Power to Gas:

- Developing System Technology System Operation, Energy management, Demand response
- Improving electrolysis technology Analyzing reaction mechanism, develop lifetime evaluation, etc. (Alkaline, PEM, SOEC)

Highlight of NEDO's Program (H₂GT)

Developing combustor for H₂ gas turbine

Demonstration project / H₂ gas turbine

Highlight of NEDO's Program (Supply Chain)

Japan-Australia H₂ Supply Chain Project

Japan-Brunei H₂ Supply Chain Project

SPERA Hydrogen is easy to use.

Present situation of the project (Liquefied hydrogen)

Upper left : H2 tank on the land Upper middle : Ship on the stocks Upper right : H2 tank for ship Lower light : receiving terminal Provided by : HySTRA

Present situation of the project (organic chemical hydride)o

Upper left : Hydrogenation plant in Brunel Upper right : Dehydrogenation plant in Japan Lower right : Transport tank for MCH

Provided by AHEAD

NEDO's Program on Electrolysis

Highlight of NEDO's Program (Power to Gas)

@ Fukushima Pref. 10MW electrolysis / provide H2 to Tokyo 2020

Present situation of the project (Power to Gas)

Highlight of NEDO's Program (Power to Gas)

@ Fukushima Pref. 10MW electrolysis / provide H2 to Tokyo 2020

NEDO's Program on PtG

Fukushima (w/ 10MW Alkaline Electrolysis)

ltem	Specification
Function	 (1) Manufacturing • Storage • Supply of hydrogen (2) Balancing the supply and demand of the electricity grid
Annual manufacturing capability of hydrogen (Rated output)	900t-H2∕year
Input power of electrolyzer	(Max.) 10MW (Rated) 6MW (Range) 1.5MW \sim 10MW

Great Chance / Tokyo 2020

Image: Tokyo Metropolitan Government

- Japanese Government strongly promoting - with Prime Minister's leadership
- >Just started market penetration
 - need to enhance hydrogen energy application
 - continue to improve technology
- Utilizing hydrogen in energy system
 - enhancing hydrogen demand & role
 - demonstration at Tokyo 2020

Thank you!